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The Disease



Coronary Heart / Artery Disease

The Disease

Coronary Artery Disease (CAD) is the leading cause of death in 
the US for both Men and women (NHLBI, 2009).

CAD is caused when the arteries that supply the heart with 
oxygenated blood become blocked by Plaque

This condition is often referred to as Atherosclerosis and over 
time, can lead to heart attack, stroke, and death



Coronary Artery Calcification

The Disease

Atherosclerosis is caused when the inner lining of the arteries, 
specifically the endothelium, are injured or damaged.

Blood cells clump at the injury site in an attempt to repair the 
vessel wall, this leads to inflammation.

Plaques are then deposited on the artery wall and will 
continue to build over time.

These build ups rupture and harden over time and block the 
flow of blood.



Coronary Heart / Artery Disease

Image Courtesy of NHLBI

The Disease



Coronary Heart / Artery Disease

The Disease

There are many factors that are linked to the development of 
Atherosclerosis (smoking, diet etc..).

Atherosclerosis is usually symptom free until severe blockages 
are present.

Early detection of coronary artery calcification (CAC) and 
narrowing is key to prevention of later events.

CAC has been shown to be an independent risk factor for 
cardiovascular events (Budoff

 
et al, JACC 2007; 

Raggi
 

et al, JACC 2004, Greenland et al, JAMA 
2004).



Coronary Artery Calcification

Measurement of CAC

Ultra fast CT is used to detect and quantify CAC levels.

Measurements are usually given in AS (Agatston
 

units), 
however it is sometimes measured as a volume (mm3), or 
mass scores (Agatston, 1990).

Agatston
 

Score measures the area of the plaque multiplied 
by some density factor.  Scores can range from 0 to 
several thousand.



Coronary Artery Calcification

Raw DCCT/EDIC CAC Score

-200 200 600 1000 1400 1800 2200 2600 3000 3400 3800 4200 4600

0

20

40

60

80

100

Pe
rc

en
t

N 1205
Mean 68.14878
Std Deviation 254.0113
Minimum 0
Maximum 3101.325

CAC MEAN VALUE CT SCAN 1+2 (AGATSTON UNITS)

CAC Scores



Coronary Artery Calcification

CAC Scores

As you can see from the previous figure that raw CAC 
scores have a very high prevalence of 0 scores.

CAC scores are also notorious for being highly right skewed.

Historically, log(CAC+1) and Log(CAC) where CAC>0 have 
been used to facilitate linear regression techniques.

Other methods have also been implemented to assist in 
analysis and interpretation of CAC data.



Coronary Artery Calcification
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The data above represents the 
distribution of log(CAC+1)…

while the data to the left is only the 
portion with measureable CAC
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Analysis Methods

Analytic Challenges associated with CAC data.

Immeasurable CAC is present in many subjects and is 
represented by some lower bound (usually zero).

Large scores tend to violate many analytic assumptions.

Ordinary least squares regression analysis may be 
inappropriate and limited dependent variable data analysis 
can be complex and difficult to interpret



Analysis Methods

Analytic Methods associated with CAC data.

1.
 

Linear Regression

2.
 

Restricted Linear Regression

3.
 

Binary Logistic Regression 

4.
 

Multinomial Logistic Regression

5.
 

Tobit
 

Limited Dependent Regression



Analysis Methods
 Linear Regression

Linear regression model and assumptions

Linear Regression assumptions:

Linear Relationship between x and y
Independence of observations
Normality of the error distribution~N(0,σ2)
Homoscedasticity

y x    



Analysis Methods
 Linear Regression

Why use linear regression

Estimates are easily interpreted and understood by clinicians.

Small sample sizes can be used.

Effect sizes are easily obtained 



Analysis Methods
 Linear Regression

Why not to use linear regression

Censored data tends to produce inconsistent parameter 
estimates.

Estimation is sensitive to the normality of the error terms.

Deviations from normality and linearity can add substantial 
error to parameter estimates.

Non uniform variance due to censoring will cause standard 
error estimates to be either too small or too large.



Analysis Methods
 Linear Regression

Linear Regression assumptions
Linear Relationship between x and y:

there may be a linear relationship between observed CAC and the 
predictor, but not when the censored values are included

Constant error variance        Normality of the error



Analysis Methods
 Linear Regression

Linear Regression Bias

Graciously borrowed from David Madigan’s web page
http://www.stat.columbia.edu/~madigan/G6101/notes/logisticTobit.pdf



Analysis Methods
 Restricted Linear Regression

Why don’t we just analyze the data that has measureable     
CAC values?

We may satisfy the assumptions for linear regression analysis, 
but in most cases, 30-60 % of subjects have non 
measureable CAC.  

Excluding these data points may add significant bias to the 
parameter estimates found in the model.

0y x where y     



Analysis Methods
 Logistic Regression

Logistic regression model and assumptions

Logistic Regression Assumptions:

Underlying distribution is binary                  
Independence of observations                            
linearity between IV’s

 
and the Log odds  

Small sample sizes can produce poor power          
Hosmer

 

and Lemeshow

 

(2000) recommend at least n=400
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Analysis Methods
 Logistic Regression

Why Use Logistic Regression?

The error terms do not have to be normally distributed

The relationship between X and Y does not have to be linear

There is no homogeneity of variance assumption

Presenter
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Analysis Methods
 Logistic Regression

Why Not Use Logistic Regression?

Dichotomization can be harmful to estimation and hypothesis 
testing (Federov

 
et al, 2009).

This leads to a loss of information/power and increased sample sizes 
to detect true effects.  

If there is a non-linear effect, splitting the data will not allow 
detecting this relationship.

Requires much more data than OLS Regression, loss of 
information will cause an increase in sample size to 
maintain power.

Presenter
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Analysis Methods
 Logistic Regression

Why Not Use Logistic Regression?

When the study is prospective; the incidence of measureable 
CAC is high and thus the odds ratio is an overestimate 
relative risk.  

However, some have argued that since the distribution of CAC 
scores does not follow a known distribution, the information 
lost is minimal and the ease of results presentation makes 
up for the loss.
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Analysis Methods
 Multinomial / Ordinal Logistic Regression

Common classifications of CAC data

Reduce the continuous outcome CAC data to binary or ordinal 
response. 

Some popular categorizations of CAC data…

Measureable (>0) vs. non measureable CAC (0)

Low CAC (≤10) vs. high CAC (>10)

Categories: 0, 0-10, 11-99, 100-399, 400-infinity

Have seen data driven cut points, but they are not 
recommended.

Presenter
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Analysis Methods
 OLS and Logistic Regression

Problems with the approaches?

OLS regression is clearly inadequate in handling data with 
clustering at zero.

Binary regression models (logit, probit, LPM) are adequate if 
you are interested only in the probability of limit vs. non-

 limit responses.  They fail to extract all of the information 
available.

Ordinal regression models with arbitrary cut points can be, but 
are rarely fully efficient.

Tobin (1958) proposed a latent model approach to deal with the 
zeros.
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Analysis Methods

Truncated v Censored

Truncated: value is incomplete due to the selection 
process of the study.  Usually occurs when both the 
dependent and independent variables are lost.

Censored: value is incomplete due to random factors for 
each subject.  Usually occurs when data on the 
dependent variable is lost but not the independent 
variables.  May be due to top / bottom coding.



Analysis Methods
 Tobit

 
Limited Dependent Regression

For left censored data, censored at      .0y

The Tobit
 

regression model assumes that the underlying 
dependent variable has negative values that are 
censored at zero.  However, it is routinely used when 
observed values are clustered at zero, irrespective of 
censoring. (Sigelman

 
and Zeng, 1999)
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Analysis Methods
 Tobit

 
Math Stuff

The log-likelihood function for the Tobit
 

model when     =0:

There are two parts to the log-likelihood function.
Part 1:  

This corresponds to the classical regression of uncensored variables.
Part 2:  

This corresponds to the relevant probabilities that an observation is censored.

0y0y0y

0y
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Analysis Methods
 Tobit

 
Math Stuff

The log-likelihood of the Tobit
 

model is the sum of the log-
 likelihoods for each observation.

The Tobit
 

model weights censored and uncensored values 
differently because of the log-likelihood function. 

The Tobit
 

model observes the censored values, but places  
more weight on the uncensored values for a more accurate 
estimate. 

The OLS will weight every value equally, resulting in a poor 
model. 
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Analysis Methods
 Tobit

 
Limited Dependent Regression

For CAC data, the Tobit
 

model assumes that our data is 
censored at zero but may continue onto the negative 
scale if uncensored.

How can that be, an individual cannot have negative 
calcification?  Can they?

No.  But the distribution of CAC is a lognormal type and is
 transformed to conform to the assumptions of the model.  

When done, all of the CAC values less than 1 become 
negative log(CAC) values.  So log(CAC) can take values 
that are negative.  Note: log (CAC+1) values are always 
positive.
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Analysis Methods
 Tobit

 
Limited Dependent Regression

Why Use the Tobit Model

Handles the point mass zeros and the continuous data while 
producing a single parameter estimates.

Using OLS regression techniques will lead to downward 
biased and inconsistent parameter estimates.

Can be applied in most statistical software
 

programs.
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Analysis Methods
 Tobit

 
Limited Dependent Regression

Why Not Use the Tobit Model

The Tobit
 

censored regression model assumes that the error 
distribution of the underlying data is normal and is 
sensitive to violations of this assumption.

Heteroskedastic
 

errors can lead to biased estimates where 
the OLS violation leads to underestimated standard 
errors.

Must graphically examine data to verify errors are i.i.d. 
normal.
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Analysis Methods
 Generally accepted interpretation of Parameter 

Estimates

Linear Regression:  For a one unit change in the independent 
variable X, there is a     unit change in the dependent 
variable Y. 

Restricted Linear Regression: For a one unit change in X, 
there is a      unit change in Y when Y>0.

Binary Logistic Regression:  For a one unit change in X, there 
is a      unit change in the log odds of Ybinary

 

=1 or for a one 
unit increase in X, the odds of Ybinary

 

=1 increases by a 
factor of e  .

Ordinal Logistic Regression:  For a one unit change in X, 
there is a     unit change in the log odds of Yordinal

 
being “higher”.
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Analysis Methods
 Interpretation of Parameter Estimates

Tobit Censored Regression Model

Recall that in OLS there is only one conditional mean function

The Tobit
 

model has 3 conditional means (Greene, 1997)…

1. those of the latent variable y*

2. those of the observed dependent variable y

Estimated probability of observing an uncensored event
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Analysis Methods
 Interpretation of Parameter Estimates

Tobit Censored Regression Model

The Tobit
 

model has 3 conditional means (Greene, 1997)…

3. those of the uncensored observed dependent variable y

Where
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Analysis Methods
 Interpretation of Parameter Estimates

Tobit Censored Regression Model

In most cases, software returns β
 

and is interpreted as the 
change in x

 
and its effect on y*.

RECALL: we are analyzing the logarithm of CAC, thus the    
parameter estimates of the linear regression models are 
the difference in logarithms ≈

 
logarithm of the ratio.  We 

can exponentiate
 

the estimate and CI and recover the 
ratio of geometric means which is roughly interpreted as 
the multiplicative increase in the true distribution of CAC 
for every unit change in the independent variable.



Simulation Study



Simulation Study

The Goal of the simulation study is not to make statements 
based on the true distribution of CAC, rather to compare 
the performance of different analysis techniques with 
censored data.

In the study, the data is modeled such that the Tobit
 Censored regression model is correctly specified.  The 

distribution of CAC conditioned on the covariates  was 
normal with a uniform variance.

However, under normal conditions, CAC data may not have 
the properties desired.
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Simulation Study

Monte Carlo simulation done with 1000 samples sets of 1000 
observations each…

The relationship between x and log y* is set to a known 
value of β

 
= 1.0.  

Three different censoring patterns were examined, 25% left 
censored, 50% left censored, and 65% left censored.

*log
~ (0,1) ~ (100,4)

y x
N x N

  

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Simulation Study

The sample mean parameter estimates were noted and 
confidence intervals were calculated at the 2.5 and 97.5 

percentiles

OLSβ

 

≈ β – (OLSBias

 

x β) When assumptions are met
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Simulation Study

What if the data assumptions are not met?

Austin et al (2000) presented a simulation study that compared 
OLS to Tobit

 
regression in the presence of non normal 

error terms and non constant error variance.

When the Tobit
 

model is correctly specified, the relative bias in 
the parameter estimate is close to 0 while the bias in the 
OLS model is proportional to % of censored observations.

When the conditional distribution is the mixture of 2 normal 
distributions, the bias in the tobit

 
model remained < 10% 

even when the censoring % was high.
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Simulation Study

What if the data assumptions are not met?

When the underlying data had a lognormal conditional 
distribution, again the OLS bias was approximately equal to 
the proportion of censoring while the Tobit

 
parameter bias 

performed better with bias < 10%. 

When the underlying data is normal with increasing variance, 
the Tobit

 
model performs as poor or more poorly than the 

OLS model.

Lastly, when the underlying data is lognormal and the variance 
in increasing with X, the Tobit

 
model again had a greater 

relative bias than the OLS model.
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Example with real CAC data



Example
 DCCT/EDIC Data

Study Description

The Diabetes Control and Complications Trial (DCCT) / 
Epidemiology of Diabetes Interventions and Complications 
(EDIC) study provides an opportunity to explore the 
complex relationships among traditional CVD risk factors, 
glycemia, and CVD outcomes.

As an example, we will examine the relationship between 
levels of CAC and the waist to hip ratio of each subject 
adjusted for other known covariates.
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Example
 DCCT/EDIC Data

Data Analysis 
CT was performed on 1205 of the original 1441 subjects 

(84%) and 1189 have “natural waist to hip ratio”
 

data 
available.

Data was analyzed by Cleary et al (2006), results were 
summarized using both logistic regression models (CAC=0, 
CAC>0) as well as the Tobit

 
censored regression.  Their 

focus was on metabolic memory and the effect of intensive 
treatment of diabetes on cardiovascular outcomes.  

We will only focus on the a more simple age and gender 
adjusted analysis of the relationship between CAC and WH 
Ratio.
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Example
 DCCT/EDIC Data

Results
Of the 1189 subjects with available CAC data, 821 have censored 

data (69%).

OLSβ

 

= β

 

– (OLSBias

 

* β) thus 1.19-(1.19*0.69)=0.368 ≈

 

0.391.  So, 1.19 is not 
the true underlyling

 

Beta, but is probably close.
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Conclusions and other work



Conclusions

Some basic conclusions

OLS Regression models will provide heavily biased estimated
 in the presence of censoring.

The Tobit
 

regression model appears to be more robust in the 
presence of non normal data than OLS.

OLS performs better than the Tobit
 

model in the presence of 
Heteroscedasticity.

Most published studies use a Logistic and/or Tobit
 

regression 
modeling approach.
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Conclusions

Tobit model in SAS
proc qlim data=cac;

where (x ne .);
model cac

 

= x;
endogenous cac

 

~ censored (lb=0);
output out = fitted predicted expected conditional xbeta

 

errstd;
run;

data fitted;
set fitted;
cdf

 

= probnorm

 

(xbeta_cac/ errstd_cac);
pdf

 

= PDF('NORMAL',xbeta_cac/errstd_cac);
y_censored_expected

 

= cdf

 

* xbeta_cac

 

+ errstd_cac

 

* pdf; 
/* This is E(Y|X)*/

run;

The Tobit
 

model can also be implemented in SAS Proc 
Lifereg, R (VGAM),  STATA (tobit), and Mplus
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Further Work

Models used in the literature

Tobit
 

Regression, Logistic regression, OLS Regression, 
Probit

 
Regression, Risk Regression, Median Test, 

Generalized Additive Models

Other Suggestions

Two Part Models 
Logit-linear & Probit-linear, Han and Kronmal, 2006
Probit/Log Skew normal, Chai

 
and Bailey, 2008

implemented using MLE in proc nlmixed
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Further Work

Is the underlying distribution of log(CAC) truly 
symmetric and normal?  

If not, how biased will the estimates become and how will 
the methods compare? 

Fleishman’s Power Transformation Method can be used to 
add varying levels of skew and kurtosis to the 
distribution and retest the models noting the bias. 
(Fleishman, 1978)
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